
Download free eBooks at bookboon.com

Introduction to Web Services with Java

15

Introduction

1 Introduction

Objectives

Ater studying this chapter, you should be able to:

1. Describe basic elements of a Web Service application

2. Compare and contrast the purposes of Web and Web Service applications

3. Describe the beneits of Web Services

4. Write a simple Web Service application using Java Development Kit (JDK) 6 or later

5. Verify and test a Web Service application

In the early days of the Internet, Web applications delivered static webpages via HTML. Certainly, the

development of websites was simpler; however, static content can quickly become outdated; thus, the

content management of a website is important.

Figure 1-1 Early Web applications

In order to provide dynamic content to Web users, 2-tier web applications were realized with the

introduction of the Common Gateway Interface (CGI), which retrieves content from external data

resources, such as a database. CGI acts as a client in the traditional client-server architecture. A CGI

script processes the request and returns the result to the Web server. he server then formats the contents

in HTML and returns to the browser for display.

CGI sufered many drawbacks that necessitated changes to the 2-tier architecture. he database was oten

running on the same machine; therefore, making backups of the data was diicult. CGI was running as a

separate process, so it sufered from a context-switching penalty. CGI was not designed for performance,

security or scalability.

Figure 1-2 Two-tier web application

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

16

Introduction

Nowadays, n-tier Web application architecture is commonly used. In this architecture, middleware or

an application server is introduced to connect the Web server and the database more eiciently. he

performance of an n-tier application is improved because Web servers, middleware and databases can

be hosted by separate machines. Each tier can be replicated for the purposes of load balancing. Security

is also improved because data is not stored on the Web or application server, which makes it harder for

hackers to gain access into the database where data is stored.

Figure 1-3 An n-tier web architecture

A web and an application servers are oten run on the same machine; however, it is best practice to run

the database server on a separate machine. In a sotware development environment, all three servers can

be hosted on a single machine. In this book, a server is oten refered to a sotware application.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Introduction to Web Services with Java

17

Introduction

1.1 Browsing the Internet

Before the conception of Web 2.0 (around 1999), the basic use of the World Wide Web (WWW) and

the Internet was simple and based on the traditional client-server model with older technologies such

as Remote Procedure Call (RPC) or Transaction Processing (TP) Monitors or other middleware that

permitted programmable clients.

Consider a typical use case of a person browsing the Internet by means of a browser. he Web server

in this example serves dynamic HTML pages using Java Server Pages (JSP) technology. In addition, it

uses Enterprise Java Bean (EJB) or Plain-Old-Java-Object (POJO). JSP is oriented toward the delivery

of webpages for the presentation layer. EJBs or POJOs are usually used for processing business rules.

here are thousands of Web applications that use Java/JEE technology.

Figure 1-4 Man-machine interaction

he Internet architecture was originally designed for human users. HTTP protocol was for exchanging

documents (Web or HTML pages). HTML was designed for basic graphical user interface (GUI)

applications. Computing resources on a web browser are oten idle while the user is browsing the

Internet. hese available resources prompted the idea of providing more robust web browsing experience.

In addition, the idea of business-to-business (B2B) data exchange model also became more feasible.

Accordingly, the WS architecture was introduced to support this new type of data exchange.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

18

Introduction

1.2 Web Service architecture

A service can be one of the three types of interaction: man-to-man, man-to-machine, or machine-to-

machine. A restaurant service is an example of man-to-man interaction. A person withdrawing money

from an Automated Teller Machine (ATM) is an example of man-to-machine interaction. Machine-to-

machine interaction is exempliied by a handheld device, such as a smart device (e.g., a phone or a tablet),

synchronizing its address book with Microsot Outlook. A Web Service is a type of machine-to-machine

interaction that uses speciic Web standards and technology. A Web Service is a set of programming

interfaces, not a set of webpages.

his section begins with a basic deinition of a Web Service in order to establish a basic understanding

for use in later chapters. More complex aspects of Web Services will be easier to understand when the

basic concept of a Web Service is properly explained.

According to W3C website, http://www.w3.org/TR/ws-desc-reqs:

A Web Service is a sotware application identiied by a URI whose interfaces and binding are

capable of being deined, described and discovered by XML artifacts and [that] supports direct

interactions with other sotware applications using XML based messages via Internet-based

protocols.

A Web Service must involve a Web-based protocol, such as HTTP or Simple Mail Transfer Protocol

(SMTP). Other transport protocols may be used, but HTTP is the most common one being used. HTTPS

uses Secure Socket Layer (SSL) or Transport Secure Layer (TLS) for secured transport of data. In regard

to sotware development concerns, the diference between HTTP and HTTPS is trivial. HTTP, thus, is

used throughout this text.

A Web Service is a sotware application that requires interaction with another application. WS is a

sotware integration technique for a B2B type of integration. Here, one application acts as a service

provider (server) and the others act as service consumers (clients). his is a many-to-one relationship.

‘Interface’ is deined as “[he] point of interaction or communication between a computer and any other

entity” (http://www.thefreedictionary.com). An interface can also be described as an “abstraction of a

service that only deines the operations supported by the service (publicly accessible variable, procedures,

or methods), but not their implementation” (Szyperski, 2002). For example, in Java, an interface can be

deined and then implemented by a concrete class.

http://www.w3.org/TR/ws-desc-reqs
http://www.thefreedictionary.com
http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

19

Introduction

Web Service Description Language (WSDL) speciies the service interface and the rules for binding the

service consumer and the provider. According to the speciication of WSDL 1.1, WSDL is deined as

“an XML format for describing network services as a set of endpoints operating on messages containing

either document-oriented or procedure-oriented information” (http://www.w3.org/TR/wsdl). WSDL

deines how a consumer can interact with a service via a concrete network protocol and message format

using eXtended Markup Language (XML).

XML is a proile (subset) of Standard Generalized Markup Language (SGML). SGML is a metalanguage,

i.e., a language that describes other languages. Unlike HyperText Markup Language (HTML), which is

used to serve static webpages, XML allows the author to create his or her own tags. hus, XML facilitates

the data and document processing functions.

Web Service relies on Simple Object Application Protocol (SOAP) as its transport. As its name implies,

SOAP is a lightweight protocol that can be used to exchange structured messages (i.e., XML). SOAP 1.2

is the latest version. WSDL 1.1 supports SOAP 1.1, HTTP GET/POST, and MIME.

A service can be deined, published and discovered using some type of service registry. Current supporting

service registries include electronic business XML (ebXML), Universal Discovery, Description and

Integration (UDDI), and Metadata Registry (MDR). UDDI is usually a good idea; however, it is not

widely used except in a private network of services.

“The perfect start

of a successful,

international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be

www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.w3.org/TR/wsdl
http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Introduction to Web Services with Java

20

Introduction

RPC is a powerful technique that provides distributed computing capabilities across a network of

machines. RPC is a form of interprocess communication that enables function calls between applications

that are located across diferent (or the same) locations over a network. It is best suited for client-server

programming.

Machine

A
Network

Machine

B

callrpc()

return()

Figure 1-5 Remote Procedure Call (RPC)

Web Services can be used to help solve several problems in Enterprise Application Integration (EAI).

Integrating existing applications for a business solution is a complex and time-consuming task.

Applications that were written in diferent computer languages, such as C/C++, JAVA, Visual Basic, and

FORTRAN, have unique logical interfaces to the external world, which makes the integration of these

applications diicult, complex and time-consuming. Applications that are running on diferent machine

architectures, such as SUN, Personal Computer, IBM Mainframes, IBM A/S 400, have unique physical

interfaces to the external world. Integrating these applications is also challenging. Applications running

on machines that are interconnected through a network are also diicult to integrate. he challenges of

EAI arise in three main areas:

•	 Language barriers – XML is a standardized language that is used for message exchange

•	 Platform barriers – SOAP has been implemented on many platforms (e.g., Unix, Windows)

•	 Network barriers – HTTP and SMTP are standardized network protocols

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

21

Introduction

WS can serve as an enabling technology for application integration. WS, as mentioned earlier, places

thes following major standards in focus: XML, SOAP, WSDL, UDDI and HTTP.

Figure 1-6 Business-to-Business integration

SOAP sequence diagram

Client Stubs
SOAP

Processor
Network

SOAP

Processor
Adapters Service

Figure 1-7 Sequence diagram of SOAP

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

22

Introduction

Service requester – the client that consumes or requests the service

Service provider – the entity that implements the service and fulill the service requests

Service registry – a listing like a phonebook where available services are listed and described in full

Figure 1-8 Web Service Architecture

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education

 ▶ visit www.ligsuniversity.com to

 ind out more!

is currently enrolling in the

Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Introduction to Web Services with Java

23

Introduction

1.3 Beneits of Web Services

Web Services provide many beneits:

1. Platform-independent: Web Services are now available in nearly all platforms:

a) Hardware: mainframe, midrange, personal and mobile devices

b) Operating systems: UNIX, Windows, Mainframe OS, Android, and iPhones

2. Reuse of existing networking infrastructure: HTTP, SMTP, and JMS protocols

3. Loose-coupling of sotware components promotes sotware reuse

4. Reduced integration cost and increased integration speed

5. Open architecture and communication protocols

1.4 Program a HelloWorld Web Service

he concept of a Web Service can be diicult to comprehend without seeing a concrete example of how

a Web Service is created and used. he top-down approach starts with a WSDL ile that describes the

services. he top-down approach may increase the level of interoperability and allow more control of

the WS, wehereas the bottom-up approach starts at the low level of the Java bean or enterprise Java bean

(EJB) and is faster and easier.

he following steps can be used to create and test a simple WS application:

1. Run Eclipse IDE, create a new Java project, and name it ‘java-ws’.

2. Run Server.java as a Java program.

3. Verify the WSDL and the associated schema for the service endpoint:

http://localhost:9999/HelloWorld?wsdl.

4. Use SOAPUI sotware to test the HelloWorld Web Service.

5. Create Java Web Service client code.

1.4.1 Create a Project

In the example above, the bottom-up approach is used. his example requires Java 6 or later. A Web

Service called ‘Hello World’ is created with the method called ‘say’, which requires one String parameter.

To create a Java project under Eclipse IDE, perform the following steps:

1. Run Eclipse IDE.

2. Choose File → New → Java Project. Use all default and name it ‘java-ws’.

3. Expand the java-ws project, then right-click on the src directory and choose New →

Package. Name the package ‘com.bemach.ws.hello’.

4. Similarly, create another Java package com.bemach.ws.server.

5. Create two Java classes – com.bemach.ws.hello.HelloWorld.java and com.bemach.ws.server.

Server.java.

http://localhost:9999/HelloWorld?wsdl
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

24

Introduction

1.4.2 Create a Web Service

A classic HelloWorld class of Java can be written in a few lines of code. he purpose is to make sure that

a Java Virtual Machine is properly installed and ready for programming.

Listing 1-1. HelloWorld.java

package com.bemach.ws.hello;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

public class HelloWorld {

 public String say (String name) {

 return String.format("Hello, %s!", name);

 }

 public static void main (String[] args) {

 String msg = new HelloWorld().say("Johnny, B. Good");

 System.out.println(msg);

 }

}

Output:

Hello, Johnny B. Good!

In this way, the HelloWorld program is transformed into a WS application. his is a basic WS application

using the reference implementation of JAX-WS by the Java language.

To transform the HelloWorld program from a simple Java bean into a Java WS application, four WS

annotations – namely, @WebService, @SOAPBinding, @WebMethod and @WebParam – are decorated

as follows:

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

25

Introduction

Listing 1-2. HelloWorld.java with Web Service Annotations

package com.bemach.ws.hello;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

import java.util.logging.Logger;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;

@WebService

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT)

public class HelloWorld {

 private static inal Logger LOG = Logger.getLogger(HelloWorld.class.getName());

 @WebMethod

 public String say (@WebParam(name="name") String name) {

 LOG.info("Web service is called!");

 return String.format("Hello, %s!", name);

 }

 public static void main (String[] args) {

 String msg = new HelloWorld().say("Johnny, B. Good");

 LOG.info(msg);

 }

}

Annotations indirectly afect the sematics of the program via tools and libraries. he @WebService

annotation indicates that the class will implement a WS. he @SOAPBinding annotation indicates the

style of the SOAP to be used. In this example, the style is DOCUMENT as opposed to RPC. @WebMethod

indicates an operation of the WS to be created. Lastly, the @WebParam indicates how the parameter is

named inside the WSDL.

1.4.3 Create a HTTP Server

To host the service endpoint, a WS requires an HTTP server. An Apache JEE Tomcat server can be used;

however, a basic server can be created using only Java. In this example, we created an Endpoint with a

speciic URL that ties to an implementation of the WS. In this case, the URL is http://localhost:9999/

java-ws/hello and the implementation is the HelloWorld object svc.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

26

Introduction

Listing 1-3. Server.java class

package com.bemach.ws.server;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

import java.util.logging.Logger;

import javax.xml.ws.Endpoint;

import javax.xml.ws.EndpointReference;

import com.bemach.data.DbConig;
import com.bemach.ws.doc.employees.EmployeeDocData;

import com.bemach.ws.hello.HelloWorld;

import com.bemach.ws.rpc.employees.EmployeeRpcData;

/**

 *

 */

public inal class Server {
 private static inal Logger LOG = Logger.getLogger(Server.class.getName());
 private static inal String MYSQL_DRIVER="com.mysql.jdbc.Driver";
 private static inal String DB_HOST = "saintmonica";
 private static inal String DB_PORT = "3306";
 private static inal String DB_SID = "employees";
 private static inal String DB_USER = "empl_1";
 private static inal String DB_PSW = "password";
 private Server() {

 }

 protected static DbConig getDbConig() {
 DbConig dbCfg = new DbConig();
 dbCfg.setDriverName(MYSQL_DRIVER);

 dbCfg.setHost(DB_HOST);

 dbCfg.setPort(DB_PORT);

 dbCfg.setDb(DB_SID);

 dbCfg.setUid(DB_USER);

 dbCfg.setPsw(DB_PSW);

 return dbCfg;

 }

 private static inal String HOST_NAME = "localhost";
 private static inal String PORT_NO = "9999";
 private static inal String HELLO_SVC_NAME = "java-ws/hello";
 private static inal String RPC_EMPL_SVC_NAME = "rpc/employees";
 private static inal String DOC_EMPL_SVC_NAME = "doc/employees";
 private static inal String PROTOCOL = "http";

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

27

Introduction

 protected static SvrConig getSvrConig() {
 SvrConig svrCfg = new SvrConig();
 svrCfg.setListenHostname(HOST_NAME);

 svrCfg.setListenPort(PORT_NO);

 svrCfg.setListenInterface(HELLO_SVC_NAME);

 svrCfg.setListenProtocol(PROTOCOL);

 return svrCfg;

 }

 protected static Endpoint publish(SvrConig cfg, Object svc) {
 String url = String.format("%s://%s:%s/%s",

 cfg.getListenProtocol(),

 cfg.getListenHostname(),

 cfg.getListenPort(),

 cfg.getListenInterface());

 Endpoint ep = Endpoint.publish(url, svc);

 EndpointReference epr = ep.getEndpointReference();

 LOG.info("\nEndpoint Ref:\n"+epr.toString());

 return ep;

 }

 protected static void startHelloWorld() {

 SvrConig cfg = getSvrConig();
 cfg.setListenHostname(HOST_NAME);

 cfg.setListenInterface(HELLO_SVC_NAME);

 cfg.setListenPort(PORT_NO);

 cfg.setListenProtocol(PROTOCOL);

 HelloWorld hello = new HelloWorld();

 publish(cfg, hello);

 LOG.info("HelloWorld service started successfully ...");

 }

 protected static void startRpcEmployees() {

 SvrConig svrCfg = getSvrConig();
 svrCfg.setListenHostname(HOST_NAME);

 svrCfg.setListenInterface(RPC_EMPL_SVC_NAME);

 svrCfg.setListenPort(PORT_NO);

 svrCfg.setListenProtocol(PROTOCOL);

 DbConig dbCfg = getDbConig();
 svrCfg.setDbCfg(dbCfg);

 EmployeeRpcData rpcEmpl = new EmployeeRpcData(dbCfg);

 publish(svrCfg, rpcEmpl);

 LOG.info("Employees (RPC) service started successfully ...");

 }

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

28

Introduction

 protected static void startDocEmployees() {

 SvrConig svrCfg = getSvrConig();
 svrCfg.setListenHostname(HOST_NAME);

 svrCfg.setListenInterface(DOC_EMPL_SVC_NAME);

 svrCfg.setListenPort(PORT_NO);

 svrCfg.setListenProtocol(PROTOCOL);

 DbConig dbCfg = getDbConig();
 svrCfg.setDbCfg(dbCfg);

 EmployeeDocData docEmpl = new EmployeeDocData(dbCfg);

 publish(svrCfg, docEmpl);

 LOG.info("Employees (Document) service started successfully ...");

 }

 /**

 * Start WS Server with multiple service endpoints...

 *

 * @param args

 */

 public static void main(String[] args) {

 startHelloWorld();

 startRpcEmployees();

 startDocEmployees();

 }

}

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Introduction to Web Services with Java

29

Introduction

When the Server program runs, it calls the startHelloWorld method to create a WS implementation that

ties with a unique URL. he endpoint is then published and ready for receiving requests from a remote

client. For this simple program, Ctrl-C can be used to stop the server.

he DbConig.java class is a simple placeholder for the required parameters for database access and for

the URL. In a later example, Java code is used to implement data access to the database. Remember,

though, that this is sample code; therefore, the password is displayed or stored in the clear. In a business

or secure environment, passwords are entered each time or stored encrypted.

1.5 Host a Web Service

In Eclipse IDE, perform the following actions:

1. To run, open Server.java class. Choose Run → Run As → Java Application.

An Eclipse project would look like this:

Run here

Figure 1-9 An Eclipse Java project for the HelloWorld Web Service

1.6 Verify a Web Service

View the HelloWorld’s WSDL:

Open a browser and go to this URL: http://localhost:9999/java-ws/hello?WSDL

http://localhost:9999/java-ws/hello?WSDL
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

30

Introduction

Listing 1-4. HelloWorld WSDL

<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://hello.ws.bemach.com/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

targetNamespace="http://hello.ws.bemach.com/"

 name="HelloWorldService">

 <types>

 <xsd:schema>

 <xsd:import namespace="http://hello.ws.bemach.com/"

 schemaLocation="http://localhost:9999/java-ws/hello?xsd=1" />

 </xsd:schema>

 </types>

 <message name="say">

 <part name="parameters" element="tns:say" />

 </message>

 <message name="sayResponse">

 <part name="parameters" element="tns:sayResponse" />

 </message>

 <portType name="HelloWorld">

 <operation name="say">

 <input message="tns:say" />

 <output message="tns:sayResponse" />

 </operation>

 </portType>

 <binding name="HelloWorldPortBinding" type="tns:HelloWorld">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

 style="document" />

 <operation name="say">

 <soap:operation soapAction="" />

 <input>

 <soap:body use="literal" />

 </input>

 <output>

 <soap:body use="literal" />

 </output>

 </operation>

 </binding>

 <service name="HelloWorldService">

 <port name="HelloWorldPort" binding="tns:HelloWorldPortBinding">

 <soap:address location="http://localhost:9999/java-ws/hello" />

 </port>

 </service>

</definitions>

Service endpoint

Encoding style

Figure 1-10. The WSDL of the HelloWorld Web Service

To view the associated XML schema, go to this URL: http://localhost:9999/java-ws/hello?xsd=1

http://localhost:9999/java-ws/hello?xsd=1
http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

31

Introduction

Listing 1-5. HelloWorld XSD

<xs:schema xmlns:tns="http://hello.ws.bemach.com/"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

 version="1.0" targetNamespace="http://hello.ws.bemach.com/">

 <xs:element name="say" type="tns:say" />

 <xs:element name="sayResponse" type="tns:sayResponse" />

 <xs:complexType name="say">

 <xs:sequence>

 <xs:element name="name" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="sayResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

Figure 1-11. The XML schema associated with the HelloWorld Web Service.

www.mastersopenday.nl

Visit us and ind out why we are the best!

Master’s Open Day: 22 February 2014

Join the best at

the Maastricht University

School of Business and

Economics!

Top master’s programmes

•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;

Financial Times Global Masters in Management ranking 2012

Maastricht

University is

the best specialist

university in the

Netherlands

(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Introduction to Web Services with Java

32

Introduction

1.7 Test a Web Service with SOAPUI

SOAPUI is a sotware that enables sotware developers and integrators to test Web Services. Similar to

Eclipse IDE, SOAPUI is a project-based application.

1. Run SOAPUI program.

2. Select File → New SOAPUI project.

3. Fill in the Project Name and the Initial WSDL/WADL.

Figure 1-12 Create a SOAPUI project for the HelloWorld Web Service

To execute a SOAP operation, take the following steps:

1. On the let panel, double-click on Request 1.

2. Fill in the blank between <arg0> and </arg0>.

3. Click on the green triangle on the top let panel of the request.

4. View the SOAP response on the right panel.

Click here

to run

Figure 1-13 Opening the HelloWorld WSDL

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

33

Introduction

To troubleshoot at the HTTP layer, click on the ‘http log’ button on the bottom of screen.

HTTP log

Figure 1-14 Call an operation (method) of a Web Service

1.7.3.1 SOAP Request:

he SOAP processor generates this request and sends it across the network to a WS invoking an operation

say with a simple String argument.

Listing 1-6. A SOAP Request Message

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:hel=”http://hello.ws.bemach.com/”>

 <soapenv:Header />

 <soapenv:Body>

 <hel:say>

 <name>Johnny B. Good</name>

 </hel:say>

 </soapenv:Body>

</soapenv:Envelope>

1.7.3.2 SOAP response:

A SOAP response shows a simple return of a message string.

Listing 17. A SOAP Response Message

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <ns2:sayResponse xmlns:ns2="http://hello.ws.bemach.com/">

 <return>Hello, Johnny B. Good!</return>

 </ns2:sayResponse>

 </S:Body>

</S:Envelope>

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

34

Introduction

1.8 Create a Web Service Client

A WS client code is simple to write; however, the amount of code required behind the scenes in order to

ease the amount of coding on the client side can be substantial. Generated code enables a client application

to call WS operations as it would normally do with another Java bean. his makes the programming of

a client WS application a bit simpler. In the next chapter, we will use SAAJ APIs to create a Java client

code that calls the HelloWorld Web Service.

he process of creating a Java Web Service client to call the HelloWorld Web Service involves the

following steps:

1. Create a java-ws-client project in Eclipse.

2. Generate WS client stub from a service endpoint (http://localhost:9999/java-ws/hello?WSDL).

3. Write a Java client class.

 -
 ©

 P
h
o
to

n
o
n
s
to

p

> Apply now

REDEFINE YOUR FUTURE

AXA GLOBAL GRADUATE
PROGRAM 2015

http://localhost:9999/java-ws/hello?WSDL
http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Introduction to Web Services with Java

35

Introduction

1.8.1 Create a Project

1.8.2 Generate Web Service Stub

First, a generated WS client code is generated using a readily available tool, wsimport, from the Java

JDK package. Second, a client code is written using the generated code.

1. Open a command prompt or a Unix terminal.

2. Go to the java-ws-client project directory.

3. Create a ‘generated’ directory.

4. Create a ‘lib’ directory.

5. Go to the ‘generated’ directory.

6. Run the following command:

wsimport -d . http://localhost:9999/java-ws/hello?wsdl

7. Package the generated client code:

jar cvf ../java-ws-generated.jar *

8. Move the java-ws-generated.jar ile to the ‘lib’ directory.

1.8.3 Create Web Service Client

9. Return to Eclipse and refresh the Java project:

a) Choose java-ws project.

b) Choose File → Refresh.

c) From project properties, choose Java Build Path/Libraries.

d) Click on Add JARs and add the java-ws-generated.jar ile.

e) Click OK.

10. Create a new Java package: com.bemach.ws.hello.client.

11. Create a new Java class: HelloWorldClient.java.

http://localhost:9999/java-ws/hello?wsdl
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Web Services with Java

36

Introduction

Listing 1-8. A HelloWorld Web Service Client

package com.bemach.ws.hello.client;

/**

 * 2013 (C) BEM, Inc., Fairfax, Virginia

 *

 * Unless required by applicable law or agreed to in writing,

 * software distributed is distributed on an

 * “AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 * KIND, either express or implied.

 *

 */

import java.net.MalformedURLException;

import java.net.URL;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.xml.namespace.QName;

import javax.xml.ws.Service;

import com.bemach.ws.hello.HelloWorld;

import com.bemach.ws.hello.HelloWorldService;

/**

 * The following code is a normal way of going about to call

 * a web services using Java code.

 * It is much easier to comprehend.

 *

 */

public class HelloWorldWSClient {

 private static inal Logger LOG = Logger.getLogger(HelloWorldWSClient.
class.getName());

 public static void main(String[] args) {

 HelloWorldWSClient client = new HelloWorldWSClient();

 try {

 client.say("Johnny B. Good");

 } catch (Exception e) {

 LOG.log(Level.SEVERE,"ERROR:"+e);

 }

 }

 public void say (String name) throws MalformedURLException {

 LOG.info("service ... ");

 QName qName = new QName("http://hello.ws.bemach.com/", "HelloWorldService");

 URL url = new URL("http://localhost:9999/java-ws/hello");

 Service service = HelloWorldService.create(url, qName);

 HelloWorld port = (HelloWorld)service.getPort(HelloWorld.class);

 String returnMsg = port.say(name);

 LOG.info("return: "+returnMsg);

 }

}

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Web Services with Java

37

Introduction

1.9 Run a Web Service Client

Output

Web Service response: Hello, Johnny B. Good!

1.10 References

Gottschalk, K., Graham, S., Kreger, H., & Snell, J. (2002). Introduction to Web Services architecture.

IBM Systems Journal, 41(2), 170–177.

Kleijnen, S., & Raju, S. (2003). An Open Web Services Architecture. Queue, 1(1), 38–46.

Martin, J., Arsanjani, A., Tarr, P., & Hailpern, B. (2003). Web Services: Promises and Compromises.

Queue, 1(1), 48–58.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

